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ARTICLE INFO ABSTRACT

MsC: A class of wavelet-based methods, which combine adaptive grids together with second-order central and central-
00-01 upwind high-resolution schemes, is introduced for accurate solution of first order hyperbolic systems of conser-
99-00 vation laws and related equations. It is shown that the proposed class recovers stability which otherwise may be
Keywords: lost when the underlying central schemes are utilized over non-uniform grids. For simulations on irregular grids,
Interpolating wavelet both full-discretized and semi-discretized forms are derived; in particular, the effect of using certain shifts of the
Adapted grid center of the computational allow to use standard slope limiters on non-uniform cells. Thereafter, the questions

Central high-resolution schemes
Second order accuracy
Nonlinear waves

Discontinuous fronts

of numerical entropy production, local truncation errors, and the Total Variation Diminishing (TVD) criterion
for scalar equations, are investigated. Central schemes are sensitives for irregular grids. To cure this drawback in
the present context of multiresolution, the adapted grid is locally modified around high-gradient zones by adding
new neighboring points. For an adapted point of resolution scale j, the new points are locally added in both res-
olution j and all successive coarser resolutions. It is shown that this simple grid modification improves stability
of numerical solutions; this, however, comes at the expense that cell-centered central and central-upwind high
resolution schemes, may not satisfy the TVD property. Finally, we present numerical simulations for both scalar
and systems of non-linear conservation laws which confirm the simplicity and efficiency of the proposed method.
These simulations demonstrate the high accuracy, the entropy production of wavelet-based algorithms which can

effectively detect high gradient zones of shock waves, rarefaction regions, and contact discontinuities.

1. Introduction

Multiresolution-based studying has rapidly been developed in many
branches of science; one of such powerful schemes is the wavelet the-
ory. Wavelets act as a mathematical microscope and can detect abrupt
variations. Development of this theory is simultaneously done by scien-
tists, mathematicians and engineers [1]. Wavelets can detect different
local features of data separated locally in different resolutions. Wavelets
can efficiently distinguish overall smooth variation of a solution from
locally high transient ones. This multiresolution feature has interested
many researchers in the field of partial differential equations (PDEs)
[1]. One approach is to study problems in accordance with their solu-
tion variations; i.e., using different accuracy in different computational
domains. In this approach, more grid points are concentrated around
high-gradient zones to detect high variations. Such simulations lead to
adaptive solvers. In this case, only the important physics of problems are

precisely studied for a cost-effective computations. In general, wavelet-
based adaptive methods have successfully been implemented for PDE
solutions containing steep moving fronts or sharp transitions in small
zones [2-9]. In the most of these approaches, wavelets are used as a
tool to detect localized spatial behaviors and corresponding zones, also
see [10-12]. Wavelet coefficients with considerable values concentrate
automatically in the vicinity of high-gradient regions. The wavelet co-
efficients have a one to one correspondence with corresponding spatial
grid points. Hence, by ignoring coefficients of small values and corre-
sponding grid points, a considered grid can be adapted. In these grid-
based adaptive schemes, the degrees of freedom are considered as point
values in the physical space [13-15].

In this work, the propagation of nonlinear fronts are simulated by
central high resolution schemes with proper integration of them with
wavelet-based adaptation procedures. The accuracy and the effective-
ness of numerical solutions can be obtained by such incorporation. In
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numerical simulation of first order hyperbolic systems, several impor-
tant and challenging features exist, as: the lack of inherent (natural)
dissipation [16], the forming of artificial (numerical) dissipation and
dispersion [17,18]. Inherent dissipation in a system improves both adap-
tation procedure and numerical stability. The numerical dispersion leads
to developing wiggles in the front and behind of propagating waves, due
to the distortion of different phases of propagating waves (fronts). The
numerical dissipation has a tendency to flat discontinuities in numer-
ical solutions [17,18]. Discontinuous solutions are commonly formed
in non-linear first-order hyperbolic systems, where controlling both the
numerical dissipation and dispersion are challenging. Despite of hyper-
bolic systems, the inherent dissipation exists in elliptic and parabolic
PDEs [19]. These systems are not so sensitive to small perturbations in
their numerical solutions. The perturbations or errors dissipate during
numerical simulations. Based on this feature, wavelet-based adaptive
schemes have successfully been employed in the modeling of the el-
liptic [20,21], parabolic problems [15,22,23] and parabolic-hyperbolic
systems [24].

Considering hyperbolic problems, however, handling the artificial
effects -dissipation and dispersion, needs special treatment. Significant
non-physical oscillations would strongly form around the (nearly) dis-
continuous solutions: the Gibb’s phenomenon. Due to such oscillations,
numerical instability could occur. These spurious oscillations could
propagate throughout the computational domain. Therefore, both the
proper adaptation procedure and the stability of numerical solutions
can fail.

To guarantee solution stability of high-resolution schemes on non-
uniform grids, some conditions must be satisfied. Such assurance can
be obtained by using the normalized variable and space formula-
tion (NVSF) criterion [25]. This condition is successfully incorporated
with wavelet-based adaptive methods for simulation of hyperbolic sys-
tems [10,26]. In the NVSF criterion, the identifying of propagating di-
rections is necessary. This identification needs itself complex proce-
dures, especially for 2-D and 3-D problems [26]. To remedy this dis-
advantage, in this work, central and central-upwind high resolution
schemes are considered (like the Kurganov and Tadmor method) [27-
29]. Central/central-upwind high resolution schemes on non-staggered
grids offer the following benefits: having a simple and straightforward
concept; being easy to implement; having less numerical dissipation
than ones on the staggered cells, like the Nessyahu and Tadmor (NT)
method; offering both semi-discrete and fully-discrete forms; being a
Riemann-free solver; no requiring to staggered grid points as needed in
the NT scheme [30]; having comparable second and higher order accu-
racy with other expensive techniques. Central/central-upwind methods,
however, are sensitive for cell irregularity; our investigations show that
numerical instabilities appear rapidly in adaptive solutions. This is be-
cause, these methods do not originally satisfy the NVSF condition. To
guarantee the numerical stability, two features should be studied: 1) the
performance of slope/flux limiters on non-uniform grids; 2) the effects
of grid density variation on numerical solutions and adaptation proce-
dures. Most of slope limiters have been developed for working properly
on uniform grids. Using of such limiters on irregular grids leads to un-
stable solutions. Abrupt changing of grid densities can also lead to in-
stability, due to ill-posedness feature of irregular sampled data. To pre-
vent this kind of instability, density variation of adapted grids should be
checked. For achieving this purpose, adapted grids are locally modified
in the vicinity of high-gradient zones to achieve local semi-uniform grid
points (then an ill-posed problem is nearly replaced with a well-posed
one). This modification is done in context of the multiresolution analysis
by a post-processing stage. Considering an adapted grid, for each point
of level resolution j,, some extra new neighbor points are locally added.
The new points are inserted in both the same resolution level ( j,) and
all successive coarser resolution levels, i.e.: j € {jo = Ljo = 2. ..., Jpin }-
It will be shown that even-though grid modification improves numer-
ical stability, there is no guarantee to have long-term stability. This
is due to performance of slope/flux limiters on non-uniform cells. For
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non-uniform cells, one approach is to re-design limiters [31,32]. In this
study, it will be shown how to use limiters without their definition
modification. This will be done by re-locating cell centers only in some
cells acting as transmitting cells. Investigations show that the proposed
method leads to stable results comparable with those of NVSF-based
schemes.

In nonlinear conservation laws, discontinuous solutions develop typ-
ically. Thereby, common error estimation concepts, mainly based on the
Taylor expansion, can not be used. For this reason, the concept of the
local truncation error is used to assess the convergence of solutions to
weak ones as a practical approach [33,34]. Related formulations for
such error estimation would be provided for 1-D and 2-D non-uniform
cells. This kind of error has direct relationship with the Li p -norm the-
ory introduced by Tadmor et al. [35,36] for nonlinear 1-D scalar con-
servation laws with convex flux. The numerical results confirm that the
local truncation error can also be used for the convergence study of 1-D
systems or 2-D conservation laws, even with non-convex fluxes.

The uniqueness of numerical solutions is checked by the concept
of numerical entropy production. Theoretically, the numerical entropy
production is zero in smooth regions while less than zero around shocks
and discontinuities [37,38]. This helps to study the quality of numerical
results especially for ones without exact solutions. All calculations will
directly be done on non-uniform grids.

Concepts of the local truncation error and numerical entropy pro-
duction have been used for both grid and method adaptation [39-41].
Different concepts could lead to different adapted results, especially,
some concepts may not capture some phenomena. Hence, proper choos-
ing of a adaptation approach would be crucial. In this study, wavelets
are used for grid/method adaptation. Adaptation performance of this
theory would be compared with the above-mentioned two concepts.

Hyperbolic systems with non-convex fluxes would also be studied.
These systems can explain important phenomena, such as: Euler equa-
tions of gas dynamic with a non-convex flux, polymer system used for
the simulation of polymer flooding processes in enhanced oil recovery
and mechanical wave equations with non-convex fluxes. It will be shown
that even though numerical solutions converge to weak form solutions
(controlled by the local truncation error), they may not be physical (real)
ones due to the existence of complex waves in these problems [39]. In
this work, wavelets are used to both grid and method adaptations for
capturing properly physical solutions.

The Dubuc-Deslauriers (D-D) interpolating wavelets [13,14,42] are
used for grid adaptation. This family has simple and straightforward
algorithms with physical meaning. All calculations can then be done in
the physical domain. The D-D wavelets use minimal spatial support for
data reconstruction (approximation), and this is important, since: larger
inter-distance in two sampled data is, smaller correlation between them
exists [13-15].

Semi-discretized PDEs in spatial domain are solved in time by an
explicit TVD integration method, such as the second order TVD Runge-
Kutta scheme. As all spatio-temporal calculations are done in the physi-
cal domain, the method is simple and conceptually straightforward [15].

Finally it should be mentioned that different approaches were de-
veloped for handling discontinuous solutions, such as high resolution
schemes [43-45], non-polynomial-based high resolution schemes [46],
discontinuous Galerkin methods [44,47], meshfree collocation methods
[48-51], the integration of finite elements with slope limiters [52,53].

This paper is composed of nine parts. Section 2: explaining the
main concept of multiresolution-based grid adaptation by interpolat-
ing wavelets; Section 3: presenting post-processing of adapted girds;
Section 4: explaining the main concept of central or central-upwind
scheme with cell-centered cell points; Section 5: estimation of the nu-
merical entropy production; Section 6: evaluating of local truncation er-
rors on 1-D and 2-D non-uniform grids; Section 7: explanation of the TVD
conditions on non-uniform grids; Section 8: representing some 1-D and
2-D numerical examples. The conclusion is presented at the end of the
paper.
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2. Multiresolution analysis and adaptation of 1-D grids
2.1. Multiresolution representation of 1-D grids

A dyadic grid on spatial interval [0, 1] is assumed as follows [14]:

V= {xu €011 x =

k ) .
> for all JGZ,andke{O,l,...,zf}},
2.1

where j and k are the resolution level (corresponding to spatial
scale 1/2/) and spatial position (k/2/), respectively. This definition of
dyadic grid points V; in Eq. (2.1) leads to the condition x;_; ; = x; 5
and the multiresolution representation core: i.e., ¥; C V. The points
belongs to V;,, \ V; is denoted by Wj, and it can be expressed as:

2+ 1
W, = {{X,-+1,2k+1 €0, 1 xjp10k41 = By
for all jez,andke{0,1,...,2/’—1}}.

So it can intuitively be concluded that: V; @ W, = V,,. This means
the detail subspace W; with the approximation subspace V; can create
(span) the next finer approximation subspace V;,; with more details. By
repeating this decomposition procedure on ¥, , it is obvious that:

max
Na

VJmax = ijin ® Z WJmin'H" Nd =J
i=0

max Jmin -1,
where, J;,,0, Jmin and Ny denote the finest resolution, the coarsest res-
olution and number of decomposing levels, respectively [42].

A continuous function f(x), defined on Vi is assumed (i.e., x €
V;,..)- Regarding the multiresolution representation, the function can

be decomposed as [14,42]:

27min Jmax—12/-1
FG)= Y g ibr s+ D D d ()
=0 J=J min n=0
‘Imax_l
=Pf,+ 2 QU
J=J min

where ¢(x) and w(x) are scaling and wavelet functions, respectively;
sets {¢;r} and {v it denote dilated and shifted versions of ¢(x)
and y(x), respectively. Coefficients ¢;; and d; are respectively approxi-
mation and detail coefficients with resolution j. The operators Pf; and Qf;
show the approximation and detail information of f(x), defined on grid
points Vj, and W;, respectively. The approximation on successive finer
resolution j + 1, can then be obtained as: Pf;,; =Pf; + Qf; [42].

In this study, the interpolating D-D wavelet of order 2M — 1 with
support Supp(¢) = [-2M + 1,2M — 1] is used. It can be obtained by
auto-correlation of the Daubechies scaling function of order M (hav-
ing M vanishing moments) [42]. By using this family, the transform co-
efficients in Eq. (2.2) can totally be evaluated in the physical space with
physical meanings. The approximation coefficients (c; ) are equal to
sampled values of f(x) atpointsx; , €V, . and the detail coefficients
(d; ) are differences between f(x;,2,41) @and Pf;,(x; i 2p41), O d; ) =
S jp12n41) = PSig1 (X 41 2041) (for the D-D wavelets, Pf; (X, 2,41) Can
be obtained by the local Lagrange interpolation on points V)); for details
see [13,14,42].

In the interpolating wavelet theory, transform coefficients and
grid points have one-to-one correspondence. This feature leads to
a simple 1-D grid adaptation algorithm. For f(x) €V, ., a prede-
fined threshold e is assumed, then, in each level of resolution j €
{Tpins i + 1 oo s Ty — 1}, poiDts x5, € W, are omitted from
original calculating grid points, if corresponding detail coefficients, d; ,
satisfy the condition d;, <e. This means that the function at the
point x;.,,4; is smooth enough, so that its contribution in the ap-
proximation, dj,ny/j,n(x), can be neglected (see Eq. (2.2)). Donoho
[54] showed that such truncation error is in accordance with threshold
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Fig. 1. Spatial locations of points belonging to subspaces V, and Vj,
where « €V, and * U~ € V3, for (x;, y;) € [0, 11x [0, 1].

values. Finally it should be mentioned that the predefined threshold can
be either level-dependent or not. One popular level-dependent thresh-
old is e; = gy /2 mex==! for j € {J,pips Tpin + 1. ... Jpax — 1}. This means
a smaller threshold is assumed for finer resolution. To use a constant
threshold value for all resolution levels, it is better to normalize the de-

. - P _ ref .
tail coefficient of resolution j as: d; , = d; ,/ S In this study constant

pre-defined threshold with normalized factor f° jr e/ = max{ f(x;)} is used.

The presented adaptation procedure was shown to be efficient in
the resolution of scalar functions. For resolution of functions in vector
system, the previous procedure is modified to reflect the solutions’ be-
haviors of all equations. Namely, the resultant adapted grid is simply
superposition of all adapted grids; which each adapted grid corresponds
to a functions of the vector system.

2.2. Multiresolution representation of 2-D grids

Consider a uniform grid of spatial locations (x, y) € [0, 1] x [0, 1]; a
set of points belonging to subspace V; can be defined as [26]:

Vi={{G& ) xjp=k27, y,, =127} forall jklez (22

where j denotes resolution level and J,,;, <j <Jq; coefficients k & 1
measure spatial locations. Fig. 1 illustrates a schematic representation
of points belonging to V; (~€ V) and V; (*Uo € V},,) for case j = 2.

Same as the 1-D case, for 2-D information a detail subspace W; be-
longing to subspace Vj,, \ V; can be defined. These points are shown
in Fig. 1 with hollow circles; i.e.: € Wj. In this detail sub-space, three
point types s;, s, and s; can be distinguished, as:

1. Points in even-numbered points in the x direction and odd-numbered
in the y direction; i.e., set s; = {(x;41 26> V41241 )

2. Points in odd-numbered points in the x direction and even-numbered
in the y direction; i.e., set s, = {(X;412x41> Y4120}
3. Odd-numbered grid points in both directions: s;=

{(xj+1,2k+l!yj+1,21+1)}'

Based on the subspaces V; and W, a 2-D multiresolution analysis can
be obtained as the 1-D case. For point sets {(xj,k, yj)l) esipiedl, 2, 3}},

four wavelet coefficients {d; - ie{l,2, 3,4}} can be defined as:

1. For points s;, wavelet coefficients are d ;’( e
ations in vertical (y) direction,

. For points s,, wavelet coefficients are di ey they measure local vari-
ations in horizontal (x) direction,

. For points s3, two sets of wavelet coefficients can be defined as di{ ki)

and d;." e they measure respectively local variations in x and y

directions.

they measure local vari-

These coefficients can be evaluated by the 1-D wavelet transform al-
gorithm [26]. For 2-D grid adaptation, by considering a threshold value,
grid points can then be adapted as the 1 — D case [26].
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Fig. 2. Modification of an adapted grid; solid points and hollow circles corre-
spond to adapted and extra added points, respectively. For grid modification
stage, we assume: N, = N, = 1.

3. Post processing the adapted grid points

Once adapted grids are obtained via the aforementioned wavelet-
based procedures, grids are modified considering resolution level of
each point; this is done to guarantee gradual density variation of grid
points.

3.1. 1-D grid modification

The procedure for modification of 1-D adapted grids can be summa-
rized as:

. Setting the level resolution (j) equal to the finest resolution, i.e.: j =
J...—1,

max

Engineering Analysis with Boundary Elements 103 (2019) 172-195

The already-mentioned post processing procedure is illustrated in
Fig. 2; there, distribution of adapted grid points is shown in different lev-
els of resolution. Solid points correspond to assumed (original) adapted
points and the hollow ones associate with points obtained after the post-
processing procedure. This modification leads to locally semi-uniform
distributions.

3.2. 2-D grid modification

The 2-D grid modification will be done by controlling and adding
new points in the same and coarser resolution levels, as the 1-D grid
case. For this purpose, for different points s;, s, or s3 (Fig. 1), different
adding procedures will be considered.

3.2.1. Adding extra new points by the multiresolution concept

Adding in the same resolution. Depending on point type (s;, S, Or s3),
different inserting procedures will be considered; different neighbor
points will be added for each point s;, s, or s3, see Fig. 3. There, for
an adapted point belonging to W,, new neighbor points of W, are lo-
cally added. In this figure, bright gray solid points are the new extra
points added around each point s;, s, or s3. In this figure, only one row
or column of the nearest points is considered for modification stage.
In general, more surrounding points of W, can be considered for each
point s;, s, Or s3.

Adding in the successive coarser resolution. In this case, for a point
belonging to W; some new surrounding points including in W,_, are
added. To guarantee symmetry and gradual concentration of modified
adapted points, it may also be necessary to consider some extra points
from sub-space V;_,. For different points s;, s, and s3, different neigh-
bor points will be considered. Such grid checking/adding procedures
are shown in Fig. 4. In each illustration, points denoted by w belong
to sub-space W;_; = W,_, and points with name v belongs to the sub-
space V;_; = V,_,. In these figures, only one row or column of the nearest
distance is considered.

3.3. Post-processing 2-D adapted grids

The modification algorithm for 2-D grids is generally similar to the
1-D case; it can be reviewed as follows:

2. Considering points belonging to the detail space of resolution j; i.e.,
points: {x,,; 241 = 2k +1)/2* e W}, 1. Set the level resolution j (where J,,;, < j < J,. — 1) equal to the
3. Existence controlling of N, neighbor-points for each side of finest resolution level; i.e., j=J,, —1 (with spatial sampling
the point x;, €W; at the same level of resolution, i.e., points: steps dx = dy = 1/27max=1),
{Xjs1004001 © i€{-Nyu—N,+1,....N.}, i#0}, 2. Consider the set of points corresponding to detail sub-space of reso-
4. Existence controlling of N, neighbor-points for each side of the lution j; i.e., points {(x;, ;1) € Wj},
point x;; € W; at the successive coarser resolution (subspace W;_,). 3. Control N; neighbor-rows or columns of surrounding points for each
This step is only done for levels j > J,i, side of the point (x;, ¥;;); this control is done at the same level of
5. Adding the extra points from steps 3 and 4 to the adapted grid (up- resolution,
dating the modified adapted grid), 4. Control N, neighbor-rows or columns of points for each side of the
6. If j>Jin, set j = j — 1 and then following steps 2 through 6, point (x; ., ¥;,); this is done at the successive coarser resolution (sub-
7. If j = J,,;,, consider only steps 2 and 3. These points are added to space W,_,),
the updated adapted grid points, as the final stage. 5. Regarding step 3, add the surrounding points in subspace W,
e O o @ O 6 O e O © O © O @ O e/e O @ O @ O e o e Fig. 3. Adding procedure in the same
resolution for point types s;, s, or ss,
o O O O 0O 0O 0O 0|0 O O 0O 0O 0O 0O 0O 00 0 0O 0 0 0 o o o where +€V,, *U-€V,, -€W, and bright
e O o ° @ O e O @ O @ O @ O @@ O @ © @ O @ O e gray solid points are the added points be-
s1 s3 longing to W,,.
o 0 o ® 6 O O o0 O @ o o o o oo o @ 6 0O O O O
e O o ° e 0 oe 0 e 32e 0 @ 0 e 0 @ e O © O o
0O 0 0 0O 0O OO O OO0 O @ 0O 0 0O 00 0O O 0O 0O 0 O 0 O
e O € O @ O @ O e O ® O O @ O e O @ O © O © O ®
O O 0 0O 0O 0O 0O 0O 0|06 0o o0 o O 0O O 006 0O 0O 0O 0O 0O 0o o o
@ O @€ O @ O @ O el O ® O O @ O e O @ O @ O ®© O e
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Fig. 4. Adding procedure in the successive coarser resolution for point types s;, s, or s;, where <€ V,, *U.€Vj,

points belonging to V.

. Considering step 4, add the surrounding points in subspace W,_;;
in this stage, it may also be needed to add some new points in the
sub-space Visy (as explained before),

. If j>Jin, set j = j — 1 and go back to step 2, else go to step 8,

. If j =J,,,, consider only steps 2, 3 and 5.

min>

4. Central and upwind-central high resolution schemes of
spatially second order accuracy

4.1. One-dimensional formulations

Here, the semi-discretized form of a scalar first-order hyperbolic
system, u, + F(u), = 0, will be provided for the KT method [27] and
two other improvements of this scheme (to have less numerical
dissipation) [28,29]. By following the concept of the Reconstruc-
tion/Evolution/Projection (REP) procedure [27] for cell-centered non-
uniform cells, it is easy to show that for jth cell, the semi-discrete form
is:
du; + Fiop =

dt ij

Do _ F:

0, ,11/2:

=F(u,)- @.1)

where u; denotes cell center solution (estimated state values) on jth
cell; Ax; :=x;,,/, —x;_;/, is the jth cell length; and F(”j*’il/z) shows
a proper combination of left and right reconstructed state values and
corresponding fluxes at cell edges xj.1/,. The left and right recon-
; L R
structed state values are shown respectively by Wi and Wity
These values can be evaluated as 14/_L+l/2 =+ (u) (%4070 = X;)
R
and Uit
methods, where (ux)j denotes a limited slope at point X;.

The two improvements of the central KT scheme are central-upwind
methods, noting here by M1 and M2. They use two different maximum
local propagation speeds for right and left directions at cell edges x;,, /5.
The speeds are shown by af+1 P and aﬁ_ 12 for right and left directions,
respectively. Such speed distinguishing leads to a narrower non-smooth
zone around cell edge x;, /,, and therefore less dissipative schemes. The
scheme M2 is an improvement of the M1 method using a narrower non-

smooth zone; for more details see [28,29].

t=ujyy — (uy) ;, (Xj41 = Xj4172) for spatially second order

Expressed in terms of the left and right states Fli/l Z = F(“iL+/ 1’;2), the
reconstructed fluxes for the KT, M1 and M2 schemes are:
1. The central KT scheme:
T 1 L 1 R L
Fiop =5 Fap ™t Fi+l/2] ~ 5 %i+1/2 [“i+1/2 - ”i+1/2]' “4.2)

2. For the central-upwind method M1:
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o€ W, and bright gray solid points are the added

R L _ L R R _,L
P _ apniig ~Gptige I S Y
i+1/2 ° T R 4iv12%+12"R :

L
i+1/2 ~ %iv12
4.3)

Giv12 " Y2

3. For the central-upwind method M2:

R L _ L R L R R _ L
= _ Gt T Gnpfmpe Gap%ee Yp e

i+1/2 ak —al 2 ak ., —ak
i+1/2 i+1/2 i+1/2 i+1/2

4.4

For non-centered non-uniform cells, it can be shown (see Appendix
A) that in the sense of average solutions, the semi discrete form of central
schemes is:

di; | Foap=Fpn

dt ij

F

0, 12 T

Flu)), @.5)
where @; denotes cell average solution.

Multidimensional problems are discretized based on the 1-D for-
mulations in Egs. (4.1)—(4.5) simply by the dimension-by-dimension ap-
proach [27].

5. Numerical entropy production of central/central-upwind
schemes

Calculation of numerical entropy production helps one to control
quality/uniqueness of numerical results especially for ones without ex-
act solutions. This is because, theoretically, the numerical entropy pro-
duction is zero in smooth regions while less than zero around shocks
and discontinuities.

Puppo [37,38] showed how to estimate the numerical entropy pro-
duction for staggered central high resolution schemes. After these works,
Puppo et al. [40] improved the previous works for non-staggered
central/central-upwind schemes.

The entropy function 5(u) with flux y(u) satisfies the relationship:

n +w, () <0, n :=n(x).

Following works [37,38], by integrating this relationship in spatio-
temporal volume [x; — %, x; + %] x [t",#"+1], and discretizing the in-

equality by considering the REP concept (used in the KT, M1 or M2
method), we have:

t'”'l
[Wj;./z - Wj_,/z]> <0, nj = n(x;, 1),

(5.1)

1
n+l n_ _ %
j <nj Ax; Jpn
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Based on this inequality, the density of numerical entropy production
at xj, S]’.‘, can be defined as:

1 1
St= — gt - —
T Ax {'I, <r]} Ax;

i 1= Ve @ ) W )"

In Egs. (5.1) and (5.2), the terms in parentheses estimate the evolved
values of the entropy at the next time step (this can be done with the
KT, M1 or M2 method). Theoretically, as mentioned before, the parame-
ter S” is zero in smooth regions, however, in numerical solutions, it may
be slightly less or more than zero [40]. This kind of entropy definition
cannot efficiently detect some phenomena like contact discontinuities
even by increasing number of resolution levels (see the Sod and the Lax
problems in the Euler gas dynamic system). To remedy this, other ap-
proaches like the entropy viscosity scheme can be recommended [55].

1n+l
” [W;:fl/z - W;—l/2])}v S 1= 8(x;. 1),
5.2)

where

6. Local truncation error on non-uniform cells
6.1. One dimensional systems

The aim of this section is to estimate local truncation errors in hy-
perbolic systems of conservation laws with the governing equation: u, +
(Fw)), =0, u(x,t =0) = uy(x).

It is easy to show that solution of this equation is also a weak solution
satisfying the relationship:

E(,¢) = — / o: /X {u(x, ), (x, 1) + F(u(x, ), (x, 1) pdxdr
1=

+ / {u(x,n¢,(x, 1) }dx =0, (6.1

e
where ¢(x, t) is a test function that ¢(x,1) € C(X x10, 00])). One ef-
fective and practical way to measure convergence of a numerical solu-
tion u(x, t) is to check how much it fails to satisfy (6.1); this can be mea-
sured by evaluating E(u, ¢) [33,34]. For a convex scalar hyperbolic sys-
tem (dF(u)/d(u) > « > 0), the function E(u, ¢)) measures point-wisely real
errors in weak Lip -norm; this norm is developed by Tadmor to measure
errors in simulation of the non-linear scalar conservation laws [35,36].
In nonlinear conservation laws, discontinuous solutions develop typi-
cally; in these cases standard methods of error estimation are not valid.
Such approaches consider the Taylor expansion which is based on the
smoothness assumption.

The final point is the relationship of this local truncation error with
the weak Lip' -norm theory studied for convex scalar one dimensional
hyperbolic systems. Numerical results confirm that it is also an effective
tool for systems of one dimensional PDEs, 2-D problems, and even non-
convex systems.

To be sure that E(u, ¢) measures errors of u(x, t), some constraints
should be met by the test function ¢(x, t): 1) the space spanned by the
test functions should have a higher order accuracy, so that the order of
error E(u, ¢) is affected by solutions u(x, t); 2) the test function have
continuous derivatives; 3) to estimate locally the error E(u, ¢), the test
function has to be compact support in spatio-temporal domains.

We now consider the truncation error EJ" 1= E(u®, ¢) for the piece-
wise constant approximate solution u®(x, f)

ur(x,1) = Z u;.' X lcjxrn(x, 1),
J.n

CyxT" 2= xpy Xy ] X [P0,

The compact test function ¢(x, t) is assumed to be qﬁ;’ (x,1) 1= B;(x)B"(1),

where B;(x) and B"(t) are the quadratic B-splines with center points

X=X and ¢ = ¢". In this case, supports of Bj(x) and B"(t) belong to x €

[x;_3/2:Xj43/2) and 1 € [1"73/2,1+3/2], respectively.
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To obtain higher-order B-splines, the recurrence feature between
higher-order and lower-order B-splines: recall that the B-spline of or-
der k with centered position j can be obtained as,

Bix = Bjiw i+ By (1 —wipi),

X—X;

Sy % Xk

w; (%) 1= 6.2)

0, otherwise.

B-splines should also satisfy the partition of unity condition
Y, B =1

Let us consider three successive cells, with length ratios, a =
Ax;_;/Ax; and b= Ax;, /Ax;, where Ax; :=x;,/, —x;_j;, denotes
Jjth cell length with cell middle point x;. It is easy to show that B;(x)
is:

Bj(x)
(2x—-2x,+Ax+2alAx)? .
— e if Xj3 SX <Xy,
—4(2+a+b)(;r—>r,)z—ét(tz—b)(;c—x,)Ax+(2-¢—3b+a(3+4b))Ax2
4(1+a)(14+b)Ax*
(=2x+2x, +Ax+2bAx)?

. if X1 SX S Xjp)0,

FTRET YN if x40 S X< X3,
0, otherwise,
(6.3)
where:  Ax:=Axj;  x; = (X_1 0+ X010)/25 X3 t= x5 = Ax(1/2+

Q)X 1 =X, = AX/2 X3 =X+ Ax(1/2+b); x4y 1= x; + Ax/2.

It is easy to check that on uniform grids, where a = b = 1, the above-
mentioned B-spline definition leads to the B-spline on uniform grids.
Since in time-domain, in this study, a constant time-step is used, the
definition of B"(t) is the quadratic B-spline on uniform grids with step At,
as:

_n=3/2\2 3 1
e Y R 1r 1
2 1 1
3 _ (t—t';) L if It < trl+§’
B'(x)={% A , (6.4)
1—1"+3/2 . L 3
%, if tn+2 SISI”+2,
0, otherwise,

1 3
here: "3 = (1, + %) and "3 1= (1, + gm).
For spatially non-uniform grid points, it is straightforward to show

that the local truncation error can be expressed as:
EJ’! = AxU'/." + Aﬂ-’;’, 6.5)

where U is expressed in terms of the time differences Au! :
2~ ),

2 (aBb+2)+2b+1) »
U= Y Ay L. Au
I T 3@ D T T 3@ DD 3
and FP s expressed in terms of the time averages uF) :=
1/6(F*=' + 4F" + Frtl),
(b—-a) a b
Fl=——————— F"— F!' +——uF! .
1T T e+ 0 T ae M T
6.2. Two-dimensional problems
Let us consider a two dimensional scalar hyperbolic PDE as:
u + Fu), + G(u), =0, ug(x,y) 1= u(x,y,t =0). (6.6)

As in the 1-D case, the weak solution of (6.6) satisfies
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E(u,¢) = —/_0 /Qu(x,y,t)¢,(xay,f)+F(M(x7yaf))¢x(X,yat)

+Gu(x, y, D)), (x, y, 1) dxdydr + / u(x, y, )g,(x, y,t)dxdy = 0.
Q
(6.7)

We quantify the truncation error E/” (= E@®, ¢) for the piecewise

constant approximate solution, u*(x, y, ?),

uA(x, y,t) = Z

Jikin

n n
up X e, sn(x 3, 1) Cjpe xXT

n—1/2, tn+1/2] .

= [xj—l/Z’ijrl/Z] X [.Vk—l/ZsYkJrl/Z] X [f

The test function ¢(x, y, t) can also be defined as: (;b"k(x v, 0)
B;(x)By(»)B"(1). Where all functions B; (x), By(y) (from (6. 3)) and B"(t)

(from (6.4)) denote quadratic B- splmes Let us assume the successive
Ax;_ Ax;

{a — j—1 — Jj+1 }

Ax; ’ Ax;

cell length ratios in x and y directions to be:

Ay Ay, . _ -
and {c= ﬁ’ d= ﬁ}, where: Ax = Ax; := X4y, — X;_1;, and
Ay = Ay 1= Y172 = Yr—1/2- By these assumptions, the local truncation

error E;’ . can be represented as:
By, = { AxAyU}, + AtAVF], + A8l |, ©68)

where ‘l/'j"k is expressed in terms of the time differences Au’, 5=
n+1 n—1
1/2(ua’ﬁ —ua,ﬂ)

2,43 a*(a(Bb+2) +2b+ Du"~!
L — Y + I A
IE 9@+ Db(b+ 1) Il 9a+ 1D2(b+1) =Lk
p2c3 , P (aBb+2)+2b+ 1)

. u.
Lk 9+ 1)(b + 1) JHLk

d3(a(Bb+2)+2b+1)

+ 9a(a+ 1)(b+ 1)
A3@Bb+2)+2b+1)

. u.
9a(a+ 126+ 1) ! 9(a + b(b + 1) ke
2)+2 1)? 3
(a(3b+ )+ b+ ) Au’,’k ac Ay .
Ya+ 1D2b+ 12 Ik 9@+ 12 IR
3 n-1
bd”u 7+1 K+l p
O+ 1) itk
and F;’ . and Q;' are expressed in terms of the time averages uZ 5=
-1 +1
1/6(Z:7ﬁ + 4Z(’11 Z” ),
3 (a - b)?
Fno= __ < F" ez pn
1T 3@ 02 T S 2o+ ) k!
be3
+ k-1
3(a2+a)(b+ 1) Fi
_a@b+aBb+2)+1) oo ad? .

. — & F
3at D2+ 1) ik 3(a+1)(b2+b)”
(a—b)2b+a(Bb+2)+1)
3a+ D2+ 12 Nk

(a — b)d? " b2b+aBb+2)+1) _,
S . oM ik+1 —MF 1.k
3(a+ Db(b+ 127 Ikt 3(a+ Db+ 1)?2 i+l

d3
3(b+1)2’uF/+l k+1°

" c2b? " (a — b)b? "
ik =T HO k-1 T HY 1k
KT 3@ a)b+ D) T 3@ Db+ 1) :
d’b "
+ 3(b+ 1)2 ”Gj+1,k+1
ac? a’(a - b)
- —uG" _uG"
3a+ )2 T G R )T
a*d?

—_uG"
3a+ (b2 +b)" S
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_*2b+aBb+2)+ 1)
3a(a+ 1)2(b+ 1) k=

(a—b)(2b+aBb+2)+1)
3(a+ 1)2(b + 1)? ok

d’(2b+a(3b+2) + 1)
3a+ Db+ 12b Ik

7. The TVD property of semi-discrete schemes
7.1. Global and local TVD conditions

To control the development of spurious oscillations in numerical sim-
ulation of hyperbolic systems, it is necessary to show that a monotone
(non-increasing or non-decreasing) profile remains monotone during
time evolution. To achieve high-order of accuracy, a relaxed monotonic-
ity condition — so called Total Variation Diminishing (TVD) is sought
[43,56]. We consider a general class of non-linear semi-discrete scalar
scheme which takes the incremental form
du; . _ .
o = H_1/2(14,»+1 —u;) — C,._l/z(ui —u;_1), u; = u;(t).

A general (global) TVD condition derived in [56] is expressed in
terms of the global positivity condition, e.g.,[57-59]:

Chipz0. Clip20,CL ), +Cryp <L A)

Local TVD conditions were studied in [60] where it was shown that
for the TVD property to hold, it suffice to verify the positivity condi-
tion (7.1) in the extreme cells and their surrounding grid points. In the
present context of (4.1), these local TVD conditions amount to:

1. In extreme points, for both uniform and non-uniform cells, the nu-
merical fluxes F* satisfy (see [60], Lemma 2.1):

i+1/2
. * *
(a) at maximum values u; : F+1/2 > FI 120
.. . *
(b) at minimum values ; : F+1/2 <F e

2. Oshor [61] showed that in order to satlsfy the positivity conditions,
and therefore the TVD property, we should have:
0< AA_’;_ (), <1 and 0%< AA:;,- () <1,

3. For neighbor points of an extreme u; (with estimated deriva-
tive (u,); = 0; this is based on condition 2), for uniform grids with
width Ax, the neighbor derivatives meet conditions (see [60], ex-
ample 2.4):

1, Ax 1
5| A (u)iop 11 and 5|

Ax
m(u,x)i+1 <1,

In these conditions, we have: (u,); denotes an estimation of the spatial
derivative: (u,); := d U0 w=ulx); Ax; 1= x,+1/2 - x, 1/2 denotes ith
cell width; in case of umform grids: Ax = Ax;; F, o L1/, represent re-
constructed fluxes at right and left cell boundarles Xip1/25 Aju; i=
+(y —u); (Wy);,1 are the estimated (limited) first derivatives at
points x;, 1.

The conditions 1-3 have physical meaning; the first condition states
that an extreme solution with maximum value should decrease in time
(i.e., u;’“ <ul), while an extreme solution with minimum value should
increase through time (i.e., uf'“ > u}). From the second condition, it
is clear that at extreme points we must have: (u,); =0. Due to the
third condition, the reconstructed values in cell edges should satisfy the
monotonicity feature: magnitude of the reconstructed values should be
less than immediately neighbor cell center values. This means, for ex-
ample, if ! | <ul <u? , thenu! <u! 12 S ul < u+|/2 <ul .

The third local TVD condition is for uniform cells; in case of non-
uniform cells, due to the E-condition at extreme values u; with estimated
derivative (u,); = 0, we have:

Ax,
Sign(“m - “[) = Sign({ <"[+1 - )ZH (u,x)i+1> - (“i) })
Sign (u; —u;_y) = Sign({ (u;) = (”i—l + A);_l (u,x)i—1> })

According to these relationships, TVD preserving derivatives should
satisfy:
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Ax;_
A_u

Ax;
and i+1

L iy 11

i

1 1
= = L1
B B | A+M,- (u,x)1+l |—
These two relationships confirm also as before necessity of the mono-

tone reconstruction in cell edges for non-uniform cells.
7.2. Irregularity effects on slope limiters

The central/central-upwind schemes (e.g., the KT method) is orig-
inally developed for uniform cells. Most of them satisfy the TVD and
monotonicity preserving conditions. On irregular cells, these methods
do not completely meet these conditions and therefore do not remain
necessarily stable. In the following, effects of cell irregularities will be
studied by considering the monotonicity preserving necessity and the
local TVD conditions.

It will be shown that only the grid modification (for gradual variation
of grids) is not generally enough to guarantee TVD results.

7.2.1. Slope limiters on uniform grids

Most of slope limiters meet some necessary conditions, as: 1) the
TVD; 2) preserving linear approximation; and 3) symmetric feature.
These features are explained, in brief, as follows.

The TVD property. Considering physical meanings of the local TVD
conditions 1-3, the upper limit of a TVD limiter for ith cell is (for more
details, one can see [31]):

= min{ 2(Au;) 2(A_w;)

Ax 7 Ax

where u; denotes cell center solution on the ith cell and operator «] is up-
per limit of a discrete approximation of grad(y;) in a way that solutions
remain TVD. To have TVD solutions, estimated derivative (u,); := du(x;,
t)/dx should be limited by a slope limiter ¢;:=¢(R;) as ¢;(u,);. The
function ¢; is a slope limiter at x;, where 0 < ¢; <1. Parameter R; mea-
sures smoothness by relative of successive gradients around point x;; for
uniform grids its definition is: R; = % = i%::_.

For all TVD slope limiters, it is necessary that: ¢,(u,); < u; (this upper
TVD limiter will be derived on non-uniform cells).

Linear approximation preserving. This linearity preserving condition
guarantees that linear solutions should not be limited. This is an im-
portant point to have a second order accuracy away from extrema.
For a linear function with slope s on a uniform grid, it is clear: R; =
Ajui/A_u; = {s.(A,x;)}/{s.(Ax;)} =1, where s.(A, x;) 1= s(x; .y — X;)
and s.(A_x;) := s(x; — x;,_;). In this regard, the linear preserving condi-
tion is: ¢(1) = 1. This constraint can also be obtained by considering the
MINMOD limiter definition: the linear preserving feature is conserved
if the forward and backward derivatives are the same, i.e., R; = 1.

The symmetric feature. The condition is: ¢(R;) = ¢((1/R);). This con-
dition assure that slope limiter effects are the same for forward and
backward propagating solutions. To more clarify this feature, a new pa-
rameter fis defined as: f = (A_u;)/(Ayy;), where Agu; :=u;,; —u;_,. For
monotone solutions, y; is always between u;_; and u,,, so f always be-
longs to the range [0, 1]. The parameters R and f have then a relation-
ship with each other, as: R = (1 — f)/f. The symmetric property is now
clear, since: ¢(f) = $(R) = (1 - )/ f) and ¢(1/R) =¢(f/(1 - f)) =
(1 = 1), then ¢(f)=¢(1 - f) for 0<f<1.

(12)

7.3. Slope limiters on cell-centered non-uniform grids

A grid with non-uniform cells is considered. Widths of successive
cells can be related to each other by coefficients: a = Ax;_, /Ax; and b =
Ax;y1/Ax;. Possible jump in solutions between points x;; and x;_; is de-
noted by Ayu;, where Agu; :=u; | — u;_;. The forward (D, u,), backward
(D_u;) and centered (Dyu;) differences can then be written as: D u; :=
A u; D, . Agu;
Ax;’ ot = A_xj+ALx; "

tives can be rewritten as: D, u; = 2(1 = f)Aguy)/((1 + b)Ax;); D_u; =
QfAgu;)/((1+ a)Ax;); and Dyu; = 2Agu;)/((2 + a + b)Ax;).

Considering definition of f, these deriva-
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The TVD property. This can be obtained by the local TVD conditions
1-3 (see [31]). It has the same definition as the uniform case (Eq. (7.2)):

U = min{ }

Linear approximation preserving. For non-uniform grids, the linear pre-
serving condition for a slope limiter is [31]:

2A u; 2A_u;

> 7.3
Ax;  Ax; 3)

&D,(f=1,) = _ Ao
. P2 (a+b+2)Ax;’
where f, = <L The linear preserving feature is conserved if the back-
p a+b+2

ward and forward derivatives are equal to each other: D, u; = D_u;. By

considering the MINMOD definition, this happens for case f = f,, or

values of ¢;D;(f,,) are values of the MINMOD limiter at the f,.
Symmetric condition. This feature is not fulfilled, in general.

7.4. Performance of the generalized MINMOD limiter on non-uniform grids

The generalized MINMOD (GMINMOD), can be rewritten as:

(¢ Dp)ominmop = GMINMOD{ 0D _u;, Dyu;, 0D, u;§, 1<60<2. (74

In case of non-uniform grids, different definitions of Dyu; can be
considered. One is based on the above-mentioned definition: Dyu; =
Agu;/(A_x; + A, x;), and the other one obtains by the first order least
square based estimated slope, as [31]:

2
AL x;

= D u.
2 2
A_xi + Ay x;

_U;.

A,xiz
+U;

Dyu; = Dygq u; - +
! Q-7 ! A,x,.z+A+xi2

1.5
On uniform grids, both definitions lead to the first order central dif-
ference equation: (u;,; —u;_;)/(2Ax;). Performance of these two GMIN-
MOD limiters will be illustrated on non-uniform grids.
Regarding f and Aguy; definitions, functions Dy u; (Eq. (7.5)) and u]
(Eq. (7.3)) can be rewritten as:

Dot =Dy = AFDA=DN+A+a) [ ] Ao,
0% Lsq.“i (1 +b)2+(1 +a)2 AX,- 5
’ . 2A0u;
u; = min{f,1 - f} o

i

Ui Ui

where: f := and Agu; 1= uq —up_g.

Uiy —Uj—

Performangel of tlhe GMINMOD limiters on uniform and non-uniform
grids are shown in Fig. 5. Fig. 5(a) is for uniform case and Fig. 5(b)
and (c) are for non-uniform cases. In all figures, center of each cell, x;,
is in the middle of ith cell, i.e.:x; = (x;4 /> + x;_;»)/2. A gradual vari-
ation of cell lengths is considered for irregular grids. In Fig. 5(b)
length of cells are: Ax;_; = 2dx, Ax; =dx, and Ax;,; = 0.5dx; and in
Fig. 5(c) the lengths are: Ax;_; =2dx, Ax; = 1.5dx, and Ax;; =dx.
The results confirm that: 1) on gradually varying grids, limiters may
not completely remain in the TVD region; 2) the symmetry condition
may not satisfy; 3) more gradual variation of grids is, more stabil-
ity exists; 4) the long-term numerical stability cannot guarantee; and
5) the GMINMOD limiter by the direct-definition of central differenc-
ing, Dou; = (Agu;)/(A_x; + A, x;), leads to more symmetric behaviors,
so this definition will be considered in this work.

It will be shown that to have a TVD solution (defined on non-uniform
grids) without modifying limiter definitions (the GMINMOD limiter,
here), the cell middle point, x;, should be shifted slightly; and this is
only necessary for transmitting cells (a cell between two surrounding
uniform cells with different cell lengths). In the following, at first, it
will be shown how to choose properly cell centers/edges by the adap-
tive wavelet transform. It will then mathematically be proved that why
such spatial configurations lead to stable and TVD solutions without
modifying limiter definitions.



H. Yousefi and T. Rabczuk

Engineering Analysis with Boundary Elements 103 (2019) 172-195

o« g X Xjx Xj Xi i o it o XN X
Xj-3i2 Xj-112 Xjtiz Xja312 Xj-312 Xj12 Xjs12Xj4312 Xj-312 Xj-112 Xjs1i2 Xjs3i2
10f@ . . . n 1ol . . . . 10 . . . . .
= 1
< 0.8[a= ]
d b=1
3 06} 1
I
T 04} N ]
— e LN
3 0ol // Ilnear|t.y \\ ]
e preserving AN
0 O »’/ \\ ]
00 02 04 06 08 1.0
f f f
u'; — - — GMINMOD, 6=2, D()U,'=AOU,'/AOX/

— —- GMINMOD, 6=1

GMINMOD, 6=2, Dyuj=D ¢q.U;

Fig. 5. Performance of GMINMOD limiters on non-uniform grids. Regarding the top row in each figure, hollow circles and solid points represent center of cells and

cell edges, respectively.
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Fig. 6. Wavelet based adaptive distribution of cell centers x;, corresponding edge locations and TVD feature of the GMINMOD limiter on resulted non-uniform grids.

7.5. Choosing of cell centers and edges by the wavelet-based adaptation
algorithm

In this work, at first, cell center positions, x;, are evaluated by the
adaptive wavelet transform, and then, cell edges are simply assumed to
be the middle point of them, as: x;.,/, = (x; + x;4)/2.

The interpolating wavelet theory in Section 2 uses the pyramid al-
gorithm. In this formulation, distance between detail coefficients in
the resolution j is twice those in the resolution j+ 1. Let us con-
sider an adapted grid where for every adapted points of resolution
level j + 1, there always exist two surrounding adapted points of res-
olution level j. For such adapted grids, inter-distances of successive
points increase or decrease gradually by the dyadic pattern. Let us
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consider an adapted cell-centers as { ,2d,2d,d,d, } This means,
for grid points {... X0 XX Xy 1s X 2 ...}, we have: X —Xj 5=
x;—x;_; =2dxand x;,; —x; = x;;, — x;4; = dx. Such configuration is
illustrated in Fig. 6(a). For this adapted points, it is assumed that there
always exist three successive points with equal distances from each
other. In this figure, cell edges are middle point of two successive cell
centers, i.e.. X, 2 =(x; +x; +1)/2. By this, length of created cells are:
{....Ax;_; =2dx,Ax; = 1.5dx, Ax;,, = dx,...}. Note that jth cell acts
as a transiting cell with a shifted cell center (x; is no longer in the mid-
dle of cell j). In all the surrounding cells, all cell centers remain in the
middle of cells. In the next subsection, it will be proved that such cell
configuration leads to stable and TVD results. This cell configuration
can obtain by the post-processing stage, Section 3.
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7.6. Stability and TVD conditions on wavelet-based adapted grids

In the proposed wavelet-based grid adaptation, as mentioned, cell
center of transmitting cells do not remain in the middle of cells,
Fig. 6(a). In Fig. 6, three pattern of successive cells are distinguishable:
D{j-2,j-1,j52){j—-1,j,j+1};and 3) {j,j+ 1,/ +2}. These sets
are shown in Fig. 6 (b)-(d). In the set (2), the transmitting cell j is in the
middle, while in the remaining groups, the transmitting cell j is the first
or the last cell.

In the following, the TVD local conditions are checked and modified
for such spatially non-centered cell centers. This will be done for the
set (2) (see Fig. 6(b)), and then it will be checked for the groups (1)
and (3).

7.6.1. The TVD condition when transmitting cell is in the middle of
surrounding cells (the set (2))

To provide the TVD condition for the cell set {j —1,/,j + 1} (see
Fig. 6(b)), a right propagating scalar advection equation is considered
as: u, + au, =0 for a > 0. For simplicity, the forward Euler discretiza-
tion in time will be used. The upwind finite volume method with sec-
ond order accuracy will be considered for the spatial discretization. The
resulted discretized system is:

u;."” =uj - aht (uL —ut > (7.6)

|
Ax; \ j+; i3

The symbol L represents the upwind flux and therefore the upwind-

based reconstructed value of u’ is:
Jj+1/2
L
u- o =u;+ (prj)Sj,
Jj*3

where S;:=¢;D; is a limited slope at point x;. Let us assume in the
transmitting cell j, the cell center x; locates in a way that x;,,,, — x; =
pAx; and x; — x;_; » = (1 - p)Ax;. For the wavelet based adapted grids,
it is easy to show that p = 1/3.

To show a method is TVD, it should be confirmed that: 1) a mono-
tone increasing (or decreasing) solution remains monotone increasing
(or decreasing) in time (the monotonicity preserving feature: resulted
from the posivity condition [60]); 2) if u;’ is a local maximum (or min-
imum), then at the next time step: u;?“ <uf (or u;.'“ > u;.') (due to the
first local TVD condition).

Controlling of the monotonicity preserving condition. Assume a mono-
tonically increasing solution at time step ¢ = 1" as: ”;71 <uf < u;’ - This
feature should satisfy at the next time step, i.e.: u;’ff <uftl < u;'j:ll

For the monotone increasing solution {u;' } slopes S;_; and §;
i = Wi+ (Ax; 1/2)8;  <uj and u;_'+1/2 =uj+
(PAX)S; = u;. These inequalities are obtained due to the monotone re-
construction constraint: the local TVD condition 3. Hence from Eq. (7.6),
we have:

are positive, so: u;’

Wt <ul - 93 (- ) =i .7
J I Ax \ J Jj

To complete the proof, we need to estimate a below bound for u;.'+1.
At first, due to the local TVD constraint on reconstruction edge values
(the condition 3), it is clear that: u;’ (1 =-pAx;S; > u;'_l. By consider-
ing this relationship, and conditions Sj 20& S, 20, from Eq. (7.6),
we have:

u;_'+1 =uj - Aj<(u;.' + (prj)Sj) - <u:.'_] + <Ax;71 >Sj_1>>
uj = Aj<(u;.' + [u;' - u;'_l - ijSj]) - (u;'_l ))

n n n n n J—_— — n
= a (= ) = @) = a1 =22) + 24,0,

v

v

SO:

n+1 n
Witz (7.8)
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where A; 1= aAt/Ax;. The relationship (7.8) valids for Aj§0.5.
Egs. (7.7) and (7.8) lead to the condition u;’f} <uf_ | < u;?“ <ul <
. This means a monotone solution remains monotone through
time.
Controlling of the extreme conditions (the first local TVD condition).

1. Local maximum: let us have a right propagating wave, a > 0 and "
is a local maximum on the group cell (2) (Fig. 6(b)). Due to the ex-
treme condition, we have: 1) S 41 =0 (the second local TVD condi-
tion); 2) u’_’+] > u:.' and u’.’+1 > u'.’_l; and 3) Sj > 0 (due to the monotone
reconstruction feature). Rewriting Eq. (7.6) for the maximum point,
we have:

ant
"7:} =i - <”L -t 1)
Axjpp \ i+ J*3
R
41 - 1
ij+l

aAt
u:.'_H - m([u;H] — [u;’ +prij]>.

+0.58%,1 S, | = [ + 2%, 5)])

To guarantee that u;':} <u"

e the term in the parentheses should be
non-negative; hence:

n n n

u! o —ul A u"
+1 +

OSSJ-SJ—J— J

pA%, (7.9)

T pAx i

2. Local minimum let us assume the wave propagate to the left, a <
0 and Wiy is a local minimum. This means: v} | <uf, Wi <
u' ., S;_;=0 and S;>0. By the spatio-temporal discretization
j-2 J ]

(7.6) at Xj_1, We have:

alt
R AR
Axj N =y U3

iA1
—u - ([uj +a —p)ijSj] - [u;'_l +0.5ij,lsj,l])
j—1

alt
=u" -

o Ax ([u;, +a _p)AXij] - [”7—1])

Since a < 0 and due to the constraint u;’f; > u;.’_l, we should have:
([u;' +(1- p)ijSj] - [u:.'_]]) > 0. This means:

uj — u;'_l A_uj
0<S§; < = . 7.10
=% U= pay, ~ (- phx, @10

From Egs. (7.9) and (7.10), the TVD constraint on non-uniform grids
is:

A_u" Aut
S = =min{ —— L — L%
J J (1 —p)ij pAX;

7.6.2. The TVD condition when transmitting cell is the first or last cell (the
set (1) or (3))

In this case, it is easy to show that the TVD limiter constraint, u} is
the same as cell-centered cells, see Eq. (7.3).

(7.11)

7.6.3. Linearity preserving condition
To preserve the linearity preserving condition, and so the second
order accuracy of solutions away from extrema, limiters should satisfy:

2 Agu;

(D)0 =10 = v oy,

(7.12)

where: f, 1= % and Agu; :=u;, —u;_;. The point f, corresponds
to the location where the common MINMOD limiter (MM) reaches its
maximum value. On non-uniform grids, it is easy to show that:
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Xj-1 Xj Xjs
Xj-312 X2 Xjs12 Xja312
1.0
X
a > 0.8
Ax;_1=6dx Ax;=3dx Ax;,1=1.5dx ﬂ
<—><—>L—>A S 06
+Xj+1=dx =
A_x;_4=8 dx Ax=4dx  A_x;,4=2dx ?ﬂ, 04
(1-p)Ax; =
(1-p)Ax,  pAxy (1-pAXPAX, — bhxu F o,
Xj_2 Xj-1 X Xjs1 Xja2 © 0.0
® © @ ©
Xj_3/2 Xj-112 Xjs12  Xjs3i2 0.0
f
—_U; — — GMINMOD, 6=1 — =— GMINMOD, 6=2, Dyu;=0qu;/Agx;

Fig. 7. Effects of weaker restriction on wavelet-based grid variation. For this figure, we assume x 41— X; =0.50x; = x;_1); @) cell configurations; b) the GMINMOD

limiter performance.

A_u;

_U; AL

(¢1D/‘)MM := min

[a-pp+2ax, [+ 2]y,
R f 1—f |Aoy
- [a=pp+4] [ +8]] > 719
Sor (¢ij)MM(f = fl’) = a+i+2 i\.oxujj

7.7. Controlling of the TVD condition for slope limiters on wavelet-based
adapted grids

A modified wavelet-based adapted grid is considered; the modifi-
cation is performed by the post-processing stage. It is assumed also
there always exists at least three neighbor cell centers of equal dis-
tances from each other, as explained in Section 7.5 and illustrated
in Fig. 6(a). In this figure, we have: x;_; —x; , =2dx, x; -
2dx, x;;; —x; =dx and x;;, —x;;; = dx. This configuration of grid
points leads to stable and TVD solutions, which will be studied later.
Depending of the transmitting cell location, three cell sequences are
detectable: 1) {j —2,j—1,j}; 2) {j—1,j,j+1}; 3) {j,j+1,j+2}
(Fig. 6(a)).

Cell sequence {j — 1, j, j + 1}: Transmitting cell j (with a shifted cell cen-
ter) is the middle one. In this case, we have A_x; = [a/2 + (1 - p)]Ax;
and A, x ; =Ip+b/2]Ax;. So, the backward, forward and central deriva-
tives (in the GMINMOD limiter, Eq. (7.4)) can be rewritten as: D_u ;=

2f Agu; 2(1-f)Agu; 28gu
e Da = T = Grarhay, Where a:
Ax;_1/Ax; =4/3 & b 1= Ax;,;/Ax; = 2/3; p measures cell-center shift-
ing and here p = 1/3 (see Fig. 6(a) and (b)).

The functions Sj (u;) (Eq. (7.11)) and GMINMOD (Eq. (7.4)) are illus-
trated in Fig. 6(b). The comparison offers: 1) the limiter remains com-
pletely in the TVD region; 2) the linear preserving feature is satisfied;
3) at the expense of the symmetric feature, the transmitting cell j acts
properly for joining surrounding cells; and 4) shifting of the cell cen-
ter leads to a TVD result (Fig. 6(b)), while cell-centered one does not
(Fig. 5(c)).

Cell sequence {j—2,j—1,j} (see Fig. 6(c)) In this case, we
have: A x;=(I+a)~L and A,x; = [1+2b(1 — p)] L. Hence: D_u; =

2fAgu; _ 2(1-)Agu; _ 20gu;
(I+a)Ax;” 7+ 7 [14+2b(1-p))Ax; T Q+a+2(1-p)b)Ax;
1, b=3/4 and p = 1/3. Definition of the Sy (or ”;71) is the same as
the uniform case, Eq. (7.3). Comparison of this limiter with the GMIN-
MOD is shown in Fig. 6(c). It is obvious, the GMINMOD limiter remains
in the TVD region.

Xj_ =

and Doy,

and Dyu; ; where a=

182

Cell sequence {j,j+1,j+2} (see Fig. 6(d)) Here we have: A_x;

1+2ap)Ax; 1+b)Ax; 2/ Do

% and A, x; = ¢ 2) . Hence D_u; = (léa—;i’x, U=
J

21-f)Agu; 28y _ _ _

R and Dyu; = Graprbay, where a=3/2, b=1 and p=1/3.

The function Sy (or u’.+]) is the same as the uniform case. This
function is compared with the GMINMOD limiter in Fig. 6(d), where
stable and TVD results are attached.

In General, it can be concluded that on irregular grid points with
typical grid configuration illustrated in Fig. 6(a), numerical solutions
will remain TVD and thereby stable.

7.8. Constraint on cell center adaptation in the wavelet-based algorithm

As mentioned before, it is always assumed that there exist at least
three neighbor cell centers of equal distance from each other in non-
uniform adapted cell centers. Let us assume an adapted cell with a
weaker cell-sequence condition: x;,; —x; = 0.5(x; — x;_;) or
x; =2(x; — x;_;). As an example let us consider:

Xj_p —X;p =8dx,x; —x;_y =4dx,x;y —x; =2dx and x;,, — X4y =
dx (Fig. 7(a)). For this case, if cell edges are assumed to be
in the middle of cell centers, x;,;,=05(x;+x;;,), then cell
lengths are: Ax;_; = 6dx, Ax; = 3dx and Ax;,, = 1.5dx. Hence: A_x; =

Xjt1

_ _ Ry _

[A=p)+aplAx;, Ax;=[p+(1—-p}bl, D_u;= [=pranidx,’ Dyu; =
(1-/)Agu; _ Aou; . - -

e —pian;” and Dyu; = [Trarssi—pTax, > where a = 2 and b = 0.5. For all

cells, shifting coefficient is equal to p = 1/3 (see Fig. 7(a)).

The GMINMOD (Eq. (7.4)) and u;. (from non-uniform cases:
Eq. (7.11)) are compared in Fig. 7(b). It is clear that the limiter is
slightly outside the TVD domain. For this reason, long term stability
of numerical solutions could vanish. For cell-centered cases, where x; =
(xj41/2 + X;_12)/2, the results are not also TVD, see Fig. 5(b).

To have stable results, cell centers are located in a way that there
always exist at least three neighbor grids (cell centers) of equal distance
from each other. To guarantee this condition, in the grid modification
stage (the post-processing stage), it is assumed, at least, to have: N, =
N, =1

8. Numerical examples

The following examples are to study the effectiveness of the pro-
posed method concerning nonlinear 1-D and 2-D first order hyperbolic
systems. The main assumptions are: 1- applying the D-D interpolating
wavelet of order 3; 2- using the generalized MINMOD flux/slope limiter
in all problems; 4- repeating re-adaptation processes every time step;
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j:Jmaw -1

J=3—1

Check/add around the adapted
points xj1125+1 (at the level j),
the points: 1) ;41 2(kti)+1 : @ =
—Ns to Ng; 2) 2 jtp : p = —Nc to N,

l

Update the addapted points with

the added grids in the previous step

|

For the adapted point x;41 2x+1,
p=—N,. to N,

check/add: 2 p4p

l

Update the ad-

dapted points

l

Solve by the semi-discrete form on
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Start

I

‘ Consider the initial conditions: wuy

Evaluate d]',k for Imin < .7 <

1 (the wavelet transform)

Jmaz -
!
j = Jmin
j=j+1

Include

these points

no

no

the adapted grid by the centeral high

resolution schemes (acting as a black-

box): obtaining new values u(t" + At).
The truncancation error and the
numerical entropy productions

are also evaluated at ¢t = t + At.

Fig. 8. The MRA-based algorithm for the simulation of hyperbolic problems.

5- using the semi-discrete form of central and central-upwind schemes;
6- integrating in time by the TVD Runge—Kutta second-order solver.

Fig. 8 summarizes the MRA-based simulation by the central schemes
(for 1-D problems).

8.1. Burgers’ equation

This is the simplest model to simulate nonlinear advection. It appears
in different applied mathematics, for instance nonlinear acoustics, fluid
mechanics and traffic flow.

The Burgers equation is defined as follows:

262),

where u is the conserved quantity and its flux is F(x) = u?>/2. The sys-
tem is nonlinear, so that discontinuous fronts will develop during front
propagations. Here it is assumed that the initial and boundary condi-

u, + 0,

183

tions are:

BCs : u(x=0,1)=u(l,1))=0, IC : u(x,t=0)=sin2zx) + %Sin(ﬂx).

For the above conditions, a discontinuity starts to appear
around t~0.158. This discontinuous front will propagate to the right
side after this time. Assumptions for the numerical simulations are: ¢ =
1073 (threshold), 8 = 2 (the flux limiter parameter), N, = N, = 2 (for the
post-processing stage), J,,,. = 11,and J,,;, = 5. The numerical results are
illustrated in Fig. 9 at times 0.158, 0.5, and 1. This figure contains nu-
merical results, exact solutions and corresponding adapted grids in dif-
ferent resolutions. The results confirm that adapted points are properly
concentrated around propagating fronts.

8.1.1. Some comparisons with other MRA-based adaptive methods

In the following, the results of the adaptive KT scheme are com-
pared with: i) The adaptive NVSF method [14]; ii) The adaptive essen-
tially nonoscillatory-Roe (ENO-Roe) scheme [62,63]; iii) The adaptive
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Fig. 9. The Burgers’ solution and correspond-

10
b ing adapted grid points (in figure (a), exact so-
9 t=0.158 lutions are presented by the solid line and nu-
merical solutions are illustrated by points and
8 @
hollow shapes).
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0.0 Fig. 10. Comparison of the proposed adaptive central
method and NVSF-based upwind scheme.
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scheme proposed by Holmstrom [64] by the integration of central finite
difference (FD) schemes with the sparse point representation (SPR) of
solutions (SPR-FD).

i) The adaptive NVSF. The KT central scheme and NVSF-based method
[14] are compared on wavelet-based adapted grids (the NVSF-based
method is basically developed for non-uniform grid points). The values
of the parameters are: ¢ = 1073, § = 2 (for GMM in the KT scheme), N, =
Ny=2, J,.o =11 and J,,;, =5. The second order TVD Runge-Kutta
method is used for the time integration. The results are presented in
Fig. 10 at time 0.158. For the NVSF formulation, two types of flux lim-
iters are considered: the SMART and MINMOD limiters [14]. The results
offer that the proposed method is comparable with the schemes origi-
nally provided for non-uniform grid points.

ii) The adaptive ENO-Roe scheme. Both the adaptive KT and ENO-
Roe methods are simulated with the parameters: ¢ =102, N, = N, =
1, Jypux = 12 and J,,;, = 4. For the KT scheme, it is assumed: ¢ = 2 (for
the GMM). For both methods, the time integration is performed by the
third-order TVD Runge-Kutta method.

184

Adaptive and exact solutions are presented in Fig. 11 at+ = 0.158, 0.5
and 1; in these illustrations, markers - and X, and the solid line show
the solutions obtained by the ENO-Roe, the KT and the exact method,
respectively. It is obvious that results from two adaptive methods have
a good agreement (the KT method is slightly more dissipative than the
ENO-Roe scheme; see the solutions at ¢ = 0.158).

iii) The SPR-FD scheme proposed by Holmstrom [64]. In this bench-
mark, a Burgers’ equation with a diffusion term is considered, as:

L),

u + =

3 (8.1)

where here Q*(u,u,) = pu, is the diffusion term, in which u, =ou/dx
and u is a constant. The BCs and IC are assumed to be:

BCs : u(x=0,t)=u(l,t) =0, IC : u(x,t =0) = sin(2zx). (8.2)

The semi-discrete form of Eq. (8.1) is:
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Fig. 11. The comparison between the adaptive
KT and ENO-Roe [62] schemes on MRA-based
adapted grids at = 0.158, 0.5 and 1.

-0.5, ) 1-02%L \ \ \ \ E
0.0 0.2 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 X0 Xow, t=0.25 Fig. 12. The comparison between the adaptive KT and SPR-FD
o - [64] schemes on MRA-based adapted grids at t = 0.25.
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0.0 0.2 0.4 0.4993 0.5 0.5007
X
du, F:Fm - Fi"_l/2 Piip—Pip 8.2. Euler system of equations
—+ = (8.3)
dt Ax;
For this system, the governing equation is:
where 0
o 7 P} o
> pu |+ = pu-+ P =1 0 |
| wE+P) 0

1 u
P = 59 QUi

1
P = E{Q(u,-,

Ui — U

X }’
—_— } (8.4)
x

In this study, the assumed parameters are: u = 107, ¢ = 107, § =

2, Jpax = 14 and J,,;,

= 4 [64]. For the KT scheme, the third-order TVD

Runge-Kutta method is used for the time integration; for the SPR-FD
method, the common fourth-order Runge—Kutta method is used for the
time integration and spatial derivatives are approximated by the cen-
tered finite difference method stencil of order p = 4. A discontinuity de-
velops in the solution of Eq. (8.1) at x = 0.5 which obtains its maximum
at t = 0.25. The adaptive solutions are presented in Fig. 12 at ¢ = 0.25.
The zoomed in solutions reveal that both solutions can properly resolve

the discontinuity.
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where p, uand E are gas density, velocity and total energy, respectively.
The pressure P can be obtained by: P = (y — 1)<E - % ) where y is the
ratio of specific heats, and here it is assumed to be y = 1.4.

In the following three different problems with different initial and
boundary conditions will be studied. These diverse conditions lead to
different bench-mark problems; they are: 1) the Sod problem [65]; 2)
the Lax problem [66]; 3) Interaction of an entropy sine wave with a
Mach 3 right-moving front [67].

8.2.1. Sod problem

This problem was developed for studying the performance of differ-
ent numerical methods. It is a long gas tube divided into two equal parts
with a diaphragm; each part contains gas with different features. Its so-
lution includes, from right to left, a shock wave, a contact discontinuity
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Fig. 13. Numerical results, corresponding truncation errors, entropy productions, and adapted points in different resolutions for the Sod problem with the KT, M1
& M2 schemes at t = 0.2; a—c) the KT scheme; d—f) the M1 method; g—i) the M2 scheme.

(the second discontinuity in the p(t)) and an expansion zone or rarefac- 250,

tion wave. In which, the expansion gas is separated from compressing gas =107
by the contact discontinuity, and the rarefaction wave is a continuous 200 Jmax=11
process that the high pressure gas flows to the low pressure domain. N,=6

For the Sod problem, the initial conditions are:

=150
_ {{o, 0,17, x <05, mmh
= T J
P {0.125,0,0.1}", x> 0.5, 100 KT scheme
=0 — M1
L . M2
An unbounded 1-D domain is assumed: a Riemann problem. Assump- 58‘00 0.05 010 015 020 0235

tions for numerical simulations are: J,,, = 11, N; =6, e = 1073, 6 =
2, N.=2, N, =1 and dt = 107>. The numerical solutions and corre-
sponding adapted grid points are illustrated in Fig. 13 at time 0.2 with Fig. 14. Number of adapted grid points N, during simulations. In the finest
methods KT, M1 and M2. For the KT method, results are presented resolution, number of grid points is 2'! + 1.

in Fig. 13(a)—(c); these figures contains numerical results, correspond-

ing entropy productions (S”), adapted grids and local truncation errors

(EJ'.’ ). These results for the M1 and M2 schemes are provided respectively

t

in Fig. 13(d)—(f) and (g)-(i). methods with fine enough resolutions. Entropies .S” have small values in

Fig. 13 provides that: 1) methods M1 & M2 have less numerical dis- the rarefaction zone (for 0.25 < x < 0.45), but can properly detect shock
sipation in comparison with the KT scheme; 2) the M2 scheme leads to waves. The local truncation error can capture both the shock wave and
the smallest dissipation; 3) using a less dissipative method, more grid contact discontinuity. The local errors EY have considerable values in
points concentrate automatically in different resolutions. This is con- rarefaction zones. This zone is not detected by the wavelet theory; as a
firmed by comparing N, values of these three methods during simula- result, grid points do not adapted there. Considering the wavelet-based
tions, see Figs. 13(b),(e),(h) and 14. adapted points, results of S/’.’, and EI" different criteria lead to different

The numerical entropy production cannot detect the contact discon- adapted grids. In this example, it seems that wavelet-based adaptation

tinuity in this example (Fig. 13(a),(d) & (g)), even by less dissipative method leads to more realistic adapted grids.

186
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Fig. 15. Post-processing effects on stability of solu-

1.0 10 °
a b tions; a—b) with the post-processing stage; c—d) without
0.8 t=0.0012 9 ® the post-processing step. In figures (a) & (c), solid lines
’ 6=2 g - and hollow shapes are exact and numerical solutions,
respectively.
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Fig. 16. Full and semi post processing effects;
a) full post processing, N, = N, = 2; b) semi-
post processing, N, =2,&N, =0. Solid lines

and hollow shapes are exact and numerical so-
lutions, respectively.

Effects of the post-processing stage are investigated by some nu-
merical simulations in the following. At first, effect of considering the
post-processing stage is studied. Two simulations with and without the
post-processing stage are done and results are presented in Fig. 15.
Fig. 15(a)-(b) and (c)-(d) include solutions with and without the post-
processing step, respectively. The results indicate that post-processing
adapted grids have significant effects on solution stability. The numeri-
cal instability grows rapidly in absence of the post-processing step.

The post-processing stage contains both grid modification in the
same resolution and successive coarser resolution, see Section 3. To
study effects of them, two types of modifications are considered: full
and partial grid modification (by a post-processing). The modifications
are: 1) partial post processing: for a grid point having resolution j, new
points are only added at the corresponding resolution level; here we as-
sume: N, =2 & N, =0; 2) full post processing: both resolution level j
and j + 1 are controlled; we choose: Ny =2 & N, = 1. The former, the
semi-modification, is frequently used in wavelet-based adaptation pro-
cedures. Numerical results are presented in Fig. 16. Fig. 16(a) and (b)
correspond to methods using the full and partial post-processing stages,
respectively. This figure shows that long-term stability can be obtained
in case of having full-modification, Fig. 16(a).

8.2.2. Lax problem
In the solution of this problem, from right to left, a shock wave, a
contact discontinuity and a rarefaction zone are developed. Amplitude
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of the shock wave and the contact discontinuity are larger than those
of the Sod problem. In brief, the Sod and the Lax problems are used as
benchmarks with the different values of shock waves, contact disconti-
nuities and rarefaction zones.

The initial conditions of this problem are:

{

and the problem is a Riemann problem. For simulations, it is as-
sumed: € = 1073, 0 =2, and dr = 1075.

For the three methods KT, M1 and M2, solutions p, corresponding
entropies S”, adapted grids, and truncation errors E" are presented in
Fig. 17 at time 0.16. Same as the Sod problem, the results offer that:
1) less dissipative methods mobilize more adapted grid points of fine
resolutions; 2) numerical entropy production of these methods cannot
detect the contact discontinuity; 3) the local truncation errors E;' can
detect the contact discontinuity zones; 4) Ej’.’ can also detect rarefaction
zones; 5) the wavelet transform can properly capture all phenomena:
shock waves, rarefaction and contact discontinuity zones.

P
u

P

{0.445,0.69887, 3.5277},
{0.5,0,0.571},

x <0.5,
x> 0.5,

t=0

8.2.3. Interaction of an entropy sine wave with a Mach 3 right-moving

front

This challenging problem was developed to reveal high order scheme
capabilities by Shu and Osher [67].
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Fig. 17. Numerical results, corresponding entropy production, truncation errors, and adapted points of different resolutions for the Lax problem at 7 = 0.1; a—c) the

KT scheme; d—f) the M1 method; g-i) the M2 scheme.

This problem is important due to the simulation of the shock-
turbulence interactions. Amplified high-frequency entropy waves de-
velop after the shock. These high frequency waves can be captured with
numerical schemes with low numerical dissipation. Hence, this prob-
lem is a challenging benchmark to study the performance of numerical
methods in: 1) Simulation of shock-turbulence interactions, 2) Handling
of high frequency waves.

Here, it is assumed the ratio of specific heats is y = 1.4. The Riemann
initial condition is [67,68]:

{

The considered computational domain is: Q € (=5,5) x (0,T); As-
sumed parameters are: € = €y = 5 X 1073, J,,. = 11, J,;, =5 (or N, =
6), N.=1,Ns=2,0=2,dt=0.00025.

The numerical entropy production, numerical and exact solutions are
illustrated in Fig. 18 at t = 1.8. There, the solid lines and hollow shapes
are the reference [68] and numerical solutions, respectively. Regarding
numerical entropy productions, it is clear that both the M1 and M2 meth-
ods lead to less numerical dissipation in comparison to the KT scheme.
The M2 scheme leads to the least dissipative results, since magnitude
of entropy S is larger than both the KT and M1 methods. Distribution
of adapted points at different resolution levels for these three schemes
are shown in Fig. 19 at ¢ = 1.8. The methods M1 and M2 lead to more
adapted points of high resolutions. In Fig. 20 local truncation errors for
these three methods are presented, which confirm numerical conver-
gence.

SIS

(3.857143,2.629369, 10.333331,
{1+0.2sin(5x), 0, 1},

t=0
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8.3. 2-D Euler equation of gas dynamics for ideal gases

The governing equation for the 2-D system is:
u,+F, +G, =0,

where state values are u= {p,pu,pv, E}7; the flux vectors in
the x and y directions are F = {pu, pu? + P, puv,u(E + P)}T and G =
{pv, puv, pv* + P, u(E + P)}T, respectively.

In this example, radially symmetric initial conditions are assumed
with respect to the origin which it forms a dense localized high-pressure
gas with zero initial velocity. There exists initial higher density and
higher pressure inside a circle with radios r = 0.4; corresponding values
are: {p;, =1,p,, =0.1} & {P, =1, P,, = 0.1}. Other initial values are:
in = Ugyr = Ujyy = Ugyy = 0 [39,69]. The computation domain belongs to
Qe [-1.5,1.5]x[-1.5,1.5]. To control the symmetric of solutions and
corresponding adapted grids in simulations, the total of the comput-
ing domain Q is considered in simulations. Due to the symmetric initial
conditions, the exact solutions are symmetric with respect to the origin.
This feature can be used to control the performance of high resolution
solvers.

The numerical results are presented in Fig. 21 at ¢t = 0.4. Fig. 21(a)
and (b) are from the KT scheme and Fig. 21(c) and (d) belong to the M1
method. The results offer that: 1) The result of the M1 method is more
symmetric which confirms its better behavior, 2) Due to the numerical
dissipation, the KT solver leads to slightly different result from the M1
one. To clarify the numerical dissipation effects, cut of solutions are
compared along y = 0, Fig. 22. This figure confirms that the KT scheme
leads to more dissipative results.

The local truncation errors E” for the two schemes (KT and M1)
and corresponding adapted grids are presented in Fig. 23 at r = 0.2. It

U, = U
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Fig. 18. Numerical results, and entropy pro-
ductions for the right propagating front with
the KT, M1 & M2 schemes at ¢t = 1.8. In these
figures, solid black lines are the reference so-
lutions, hollow shapes are numerical ones, and
the gray solid lines are numerical entropy pro-
ductions.
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Fig. 21. The 2-D Euler gas dynamic adap-
tive solutions with corresponding adapted grids
atr=0.4.

—1.5 —1.5—1.5 —=1.5
={.:5 0 1.5 —1..5 0 L5
SZ
— M1 assumed to be: b(s,c) = sc + a(c) and f(s,c) = vy where a(c)
KT denotes the adsorption function and in this example, it is: a(c) = ﬁ
0.30 The exact solution of this problem is complex and contains both simple
and composite waves which makes it challenging for numerical solvers
[39].
025 The eigenvalues of the polymer system (8.5) are: A, = f(s,c)
Q and A, = f(s,¢)(s +d'(c))~".
0.20 For numerical simulations, we assume: J,, =11, N; =6, ¢=
107, dt = 0.00025, and N, = N, = 1 (for grid modification).
In numerical simulations two types of § are assumed: constant and
0.15 \ 4 adaptive. In adaptive case, in this work, it is assumed 6 depends linearly
on spatial positions of cell centers x;, as:
0.10 {(Ax; + Axj1)/2} = Axpy ]
-1.5 -1.0 =05 0).(0 05 1.0 15 O(x)) =1+ Ax,  —Ax,. , 0; 1=0(x;),
where Ax; 1= X5 = Xy, DX = min{ij}, and Ax,q = max{ij}. So,

Fig. 22. Comparison of numerical results obtained by the KT and M1 schemes
along y=0atz=04.

is clear that the errors are properly concentrated in high-gradient zones
detected properly by the wavelet transform.

8.4. A non-convex example: the polymer system

The governing equation of the polymer system is:
af s + a( f(s0 (0
o\ b ox\ cf(se) )T\ 0 )

where s denotes water saturation; parameter c is the polymer concentra-
tion; function f:=f(s, c) presents the fractional flow function of water;
parameter b is function of s and ¢ where b :=b(s, c). Functions b and f are

(8.5)
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around high-gradient solutions 6 — 1 and in smooth regions 6 — 2. To
study resolution effect, this example is also re-simulated for a fine res-
olution with resolution number: J,,,, = 13. In this case, number of de-
composition levels is N; = 8 and the time step is chosen in such a way
that the CFL number does not change.

Numerical results and corresponding local truncation errors for the
parameter s are illustrated in Fig. 24. The results provide that: 1) for
case 6 = 2, the numerical solution does not converge to real one, even
though it is a converged weak solution (Fig. 24(b)); 2) by using an adap-
tive scheme with adaptive 6, the result is nearly in accordance with
the real solution, Fig. 24(c); by increasing J,,,, values (or using finer
resolutions), the numerical solution approaches to the reference one,
Fig. 24(e); 4) all of the results are the converged weak solutions due
to errors E7; 5) using more higher resolution level J,,,,, smaller local
truncation errors are.
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Fig. 23. Local truncation errors for the KT and M1 schemes at t = 0.214.
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Fig. 24. Numerical solutions, corresponding adapted grids and local truncation errors for the polymer system; a, b) with 6 = 2; c¢,d) with adaptive 6; e,f) adaptive 6.

8.5. 2-D scalar conservation laws with non-convex fluxes

Let us assume a rotating wave with non-convex fluxes, defined as:
u, + {sin(@)}, + {cosw)}, = 0,

where u:=u(x, y, t) and the initial condition is:

u(x,y,t=0)={

This benchmark test, originally proposed in [39], is a challenging
2-D problem for many high resolution schemes due to the developing of
2-D composite waves in its solution.

For numerical simulations, we have: J,, =8, J,;,, =5 (or N; =
3), e=10"% dt =0.5%x 1073, and N, = N, = 1 (for the modification of
adapted grid). For modeling, two different choices of § are assumed: 1)

lx

rall
b
T

¥+ <,
2+t > 1.

the constant one with value 6 = 2; 2) the adaptive implementation of 6.
The latter is also based on the 1-D linear interpolation of # on adapted
grid points, as:

(AZaUe)j - AZmin
AZ,. —AZ

max min

0Z)=1+

B

where (AZy,), 1= {(AZ;+AZ;,,)/2}, AZ;:=Z;-Z; ., Zielx,
Yi}ts AZp = 1/27nin, and AZ,,;, = 1/2'nex. For each direction, 6(Z)) is
calculated independently.

The numerical results and corresponding adapted grid points are
shown in Fig. 25 at ¢ = 1. Figures (a) and (b) correspond to the 6-
adaptive results and figures (c) and (d) are from the constant 6. Again

the -adaptive solver converges to proper and physical results [39].

191



H. Yousefi and T. Rabczuk

Engineering Analysis with Boundary Elements 103 (2019) 172-195

Fig. 25. Adaptive solutions of 2-D non-convex
conservation law system at ¢ = 1; a, b) obtained
with #-adaptive KT scheme; c, d) based on the
KT scheme with 6 = 2.

9. Conclusion

In this study, a wavelet-based adaptation procedure is properly in-
tegrated with central/central-upwind high resolution schemes for sim-
ulation of first order hyperbolic PDEs. It is shown that central high-
resolution schemes become unstable on non-uniform cells even those
have gradual grid density variations. This is because, the NVSF crite-
rion is not satisfied by central schemes. Since their slope/flux limiters
do not remain TVD on irregular cell-centered cells. Two key ideas are
followed to remedy the instability problem: 1) replacing local irregular
grids with abrupt changing with grids having gradual variations (replac-
ing an ill-posed problem with a nearly well-posed one); 2) studying the
performance of MINMOD limiters on irregular cells. The grid modifi-
cation stage is done in the framework of the multiresolution analysis.
The TVD conditions are reviewed and provided for non-uniform cells. It
is shown that on cell-centered cells, limiter definitions should be mod-
ified. Another approach is using of non-cell-centered cells. In this case,
common MINMOD limiters can be used without modification. The TVD
conditions are derived for both cell-centered and non-cell-centered cells.
Based on these conditions, proper configuration of adapted cells and
corresponding cell-centers are derived. It is shown that the cell-center
shifting is necessary only in some cells acting as transmitting cells. They
connect surrounding uniform cells with different cell lengths.

The local truncation errors for 1-D and 2-D problems are provided
on non-uniform cells for convergence studying. Also the concept of the
numerical entropy production is investigated for uniqueness insurance.
These two concepts have also been used as criteria for grid adaptation.
In this regard, performance of these concepts are compared with the
wavelet-based algorithm. It is numerically shown that: 1) the numeri-
cal entropy production can not detect some phenomena such as contact
discontinuities; 2) this concept also have enough values in rarefaction
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domains. This can lead to unnecessary concentration of grid points in
such regions (this can also be seen in [40,41]); 3) it seems that the per-
formance of the local truncation errors as detector is better than the
numerical entropy production; 4) wavelets can properly detect all of
the shock waves, rarefaction regions, and contact discontinuities.

Non-linear hyperbolic systems with non-convex fluxes are studied. It
is shown by local truncation errors that both physical and non-physical
solutions converge to weak solutions. Both method (flux/slope limiters)
and grid adaptations are used for capturing physical solutions.

In conclusion, we can summarize the current study and its results as:

1. Developing TVD criteria for non-uniform non-centered cells and con-
trolling the performance of MINMOD limiters on such cells. In this
regard, central/central-upwind schemes can handle irregular cells,

2. However, these TVD criteria are for the structured multidimensional
cells,

3. Proposing a proper variation of grid density (adapted ones) in the
framework of the MRA. It is shown that for stable solutions, the min-
imum number of added points in each direction of an adapted point
is: a) in the same resolution level: N, = 1, b) in the successive coarser
level: N, = 1.

. Generally, the MRA-based adaptation can considerably compress
cell/grid numbers (around less than 15 percent) for problems with
localized solutions and few numbers of discontinuities; for instance,
for the Sod problem, this ratio is lower than 130/(2!' + 1) = 0.064
for the KT scheme and is lower than 220/(2!! + 1) = 0.107 for the M2
scheme,

5. A proper selection of threshold values ( ¢) may need the trial er-

ror method; however, for normalized solution values, the range ¢ €
(1073,107*) can be recommended,
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6. Updating the estimation of the local truncation errors directly on
non-uniform cells,

Studying the performance of the numerical entropy production di-
rectly on irregular cells,

Studying the performance of the MINMOD limiters with adaptive
dissipation (controlled by the parameterd) for the simulation of non-
convex hyperbolic PDEs.

7.

8.
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Appendix A. Central high-resolution schemes on non-centered
non-uniform 1-D cells

By using the cell-centered non-uniform cells, the TVD stability con-
dition does not satisfy without altering definition of slope/flux limiters.
To preserve the TVD condition without limiter definition modification,
it will be shown that by shifting cell centers in some cells, the TVD con-
dition can be reached. These cells act as transmitting cells connecting
two surrounding uniform cells of different lengths. By such cell-center
shifting, a new source of the truncation error will be introduced. Effects
of this new error will be discussed.

Considering the REP, the full-discrete and semi-discrete forms of
the scalar hyperbolic equation u, + F(u), = 0 will be provided on non-
centered non-uniform cells. For generality, it is assumed that cell cen-
ters x; are not located at cell centers (viz: x; # (xj—1/2 + x/-+]/2)/2);
so, the left and right cell edge positions are: x;_;, := x; — (1 — p;)Ax;
and Xjp1p2 1= X+ piAX, where 0 <p;< 1 (for p;=1/2 the cell center Xx;
is the middle point of jth cell).

A-1. The reconstruction and evolution stages

1. The spatio-temporal volume

where Ax;,,/ 1=

Axjiip XAt s considered,

n J—) — n - n+l _ (n
X1 ™ X1 2Ataj+|/2, and Ar ;= ",

By averaging on this volume and considering the midpoint inte-

; F— ; ntl L n
gration rule in time, the solution Wi = w(x;,.1") can be

obtained as:

x"
n+1 _ 1 /2 n+1
Wi = A /n u(x, ") dx
Jj+1/2 X2
n
1 Xjr1/2.r
= A— u(x, In) dx
X
JHY2 SN

m+l

1 n n
TRy /tn [F(“j+l/2,r) - F(“j+1/2,1)] dr
1
7

+2AXj+1(pj+1 - 1)(“x);'+1 + 2u; +2uj+1>

- Ata;'+% (ux);.l + Ata;+% (ux);.'+1 +24%;p; (ux);.l

1 1
-——|F 2 —-F 2 A-1
24" ( RS A RS ¥ A-D

ntl n+%
,"3))and F |
J+3l

Axﬁ" X At considered,

I-r « _ on _h — _ n n
where  Ax[™" = X =X, = Ax; Az‘(aj_l/2 + aj+1/2). By
averaging on this volume and considering the midpoint rule in time,

evolved solution w;,‘“ = w(x, ) ds:

1
n+ >
2 .
where F_ | '_F(”(XH%J )-

. n+1
= F(u(x. 1 st
Jts.r AT

. The spatio-temporal volume is
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Fig. A.1. The reconstruction/evolution/projection concept to have a second or-
der accuracy in the spatial domain.

X1/
W = L[ u(x, "y dx
J Axl_fr o
J =172,
X1/
= 11—r / s u(x, "y dx
ij X;‘-l/z.r
| 1
- sz—r/t" [F(“;H/z,/)_ F(u;',—l/Z,r)] dr
J
1 n n
=3 At(a:i% - a:’+l>(ux)j + ij(ij - 1)(ux)j +2uj>
At<F”+} _FnJrl% >
Jt3 J=3r

(A-2)

: P} —
. Regarding volume Ax;_, , X At, where Ax;_;/, := X g =X
evolved solution w;’jll o= W /2,t"+') can be obtained with the

similar procedure explained in (A.1).

i i n+1 n+1 n+1 IR 3
Considering Wil Wit and Wit definitions in Egs. (A.1) and (A.2),

a piecewise-linear approximation on the staggered grid in the evolution
stage is (see Fig. A.1):

lI)(X,tn+1)

. n+1
= Z {wm/z
J

[xj-l/z.r’xjﬂ/z./] } ’
where (u,)"*!

1) denote limited derivatives and 1(,3; shows a unit func-
tion on spatial interval [a, b].

n+1 n+1
+ (u,) ] +w) 1

j+l/2(x_ xj+l/2)1[

» »
Xj1/20% 12

A-2. The projection stage

The fully discrete second-order central scheme can be obtained by
averaging @(x, ") on interval [x;_j /5, X;11 2], as:

Xj+1/2
/ W(x, ") dx

Xj-1/2
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28t (8% (=) (0)] + %11 (pjor = 1) ()] =8+ 101 )
2

n n n n+l1
_At2<al__%> (), + () =207,
2
n n n n+1
+At2 (aj+%> ((ux)j + (ux)j+l - 2(ux)j+l/2) ’ (A-3)

where ﬁ;.'“ denotes the average of solution u(x,#"*!) on the cell T ;€

[jm1/2: %0112
A-3. The semi-discrete form

Regarding the full discrete form (A.3), for small enough At values,
the following approximations can be assumed: 1) ignoring of terms cor-

1 1
. +5 +5
responding to At%; 2) F 2 mF" | = FBI , and F 2 aF" ) =
Jxzr Jxzr jxl/ Jjx3.d jx3.
FJL+ 12 (due to the Taylor expansion in smooth zones). By these approx-

imations, Eq. (A.3) can be rearranged and rewritten as:
—r_x+1 _

uj—u;.' SO 2l = — Fn
At T 4Ax, i Tt

-2(-u,_ya" |, +u;d" | +u;d" | —u.d"
j—1 j_% J j_% J /+% J+1 j+%

+2(ij—11’/—1a;'_1 (ux);_LI + AX, <g"_1 - <a’f L +a" |>>(”x)7>
2 2 2

n n 1 nAX'
+2(ij+1(17]+1 - 1)””% (“x)j+1> } - (E ‘P,’)(”x),-A_tj- (A-4)

: L o._ n R ._ n
Since Ui "= U +ijxj(ux)j and Uiy t= Uy = (1 —pj)ij(ux)j,
(A.4) can be rewritten as:
=n+1 n * — F*
Uy Y + Fj+1/2 F}—l/z ~ Q" (A-5)
At Ax; 7’
Ax,
where Q7 := —(% - pj)(ux);%. On the other hand, spatial distance

between the midpoint X;
Ax; . .
[xj+1 2= %] = (% - p;)Ax;. So average solutions i relate to point

and x; is: &; 1= x; = %; = [x1/0 — pjAX;] -

value solutions, u;? as: u;‘ ~ ﬁ;’ +8; (ux);.‘. In this regard, Eq. (A.5) can
be written as:

=n+l _ =n * —
o T + Fioip
At Ax

F;— 1/2

~ 0. (A-6)
J

So, at the limit At— 0, this equation becomes:

di; + Fap=Flp _

dr Ax;

0. (A7)

So, in the sense of average solutions, the semi-discrete form re-
mains conservative. We can rewrite Eq. (A.5) based on point value so-

lutions, ; for this purpose, we approximate u;.""l as u;.""l = 12;.'“ +6; %
(ux);?“; so we have:
n+1 n F* — F*
u. —Uu. N .
J J Jj+1/2 j=1/2 n n+1
+ Q-0 (A-8)
At Ax; J J

J

We conclude this section with the following remarks regarding (A.5).

. The term Q acts as a new source of the truncation error,

. Effects of Atin Q can be controlled by small-enough spatial sampling
steps Ax;. This can be done by a proper grid adaptation procedure
around high-gradient zones,

3. Ifx; is in the middle of the jth cell, i.e. p = 1/2, the truncation error Q

vanishes: Q =0,

4. Around discontinuities, since limited slopes (”x);' are nearly zero, the

error Q approaches to zero,

5. Average solution on jth cell is (u}),,, = u} + Q X At.
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